

IONTOF

Latest Developments in 2D and 3D TOF-SIMS Analysis

Sven Kayser Sales and Marketing Manager

International NanoSIMS User Meeting Leipzig / Germany Heisenbergstr. 15 48149 Münster | Germany www.iontof.com

Superior Performance for all SIMS Applications

INNOVATIVE SURFACE ANALYSIS

Secondary Ion Mass Spectrometry

Modes of Operation

quasi non-destructive surface analysis of the outer monolayers elemental and molecular information ppm/ppb sensitivity chemical mapping of the surface lateral distribution of elements and molecules lateral resolution down to 50 nm parallel acquisition of all images

analysis of the in-depth distribution elemental and molecular information depth resolution < 1 nm from a few nm to several µm combination of imaging and in-depth information elemental and molecular information

Ultimate 2D Imaging Resolution

Primary ion: Field of view: Pixel resolution: Bi₁+ 5 x 5 μm² 512 x 512 pixel

Resolution:

< 50 nm

BAM test sample L-200

Mass Resolution vs. Lateral Resolution

TOF Principle

7

Modes of Operation

Mass Resolution vs. Lateral Resolution

Separating Mass and Lateral Resolution

Hair Sample

Human Hair Sample

238 x 238 μm^2

Glass Ceramic, FoV 25 x 25 μ m²

Glass Ceramic, FoV 25 x 25 µm²

Glass Ceramic, FoV 25 x 25 µm²

 $25\,x\,25\,\mu m^2$

Dual Beam Depth Profiling

- Sputter beam and analysis beam conditions are optimised independently
- Analysis is performed by a short pulse length and small spot size ion beam for high mass and lateral resolution
- Sputtering is achieved by a beam of reactive species(O₂ or Cs) or clusters (Ar₁₅₀₀) at low energy for increased sensitivity, high depth resolution, and short transients

3D analysis of patterned InGaAs QWs

Example provided by CEA LETI: V. Gorbenko et al., presented at 9th SIMS Europe 2014

Analysis: Bi_{3}^{++} 60 keV energy, 5 x 5 μ m² Sputtering:O₂⁺ at 500eV, 200 x 200 μ m².

128 x 128 pixels (78,1 nm/pixel)

Quantification of individual QWs without contribution from SiO₂

Influence of Topography and Sputter Rates

SIMS does not provide any information about ...

...the topography or...

...the changes of the topography due to different sputter rates

Concept of the Combined Instrument

TOF-SIMS / SPM Setup

TOF-SIMS / SPM Setup

Combined TOF.SIMS – SPM Instrument

NanoScan UHV SPM module

- > Flexure stage scanner with 80 x 80 x 10 µm³
- > 4-axes high precision piezo stage (XYZR)
- > Various static and dynamic SPM modes
- > Fast cantilever exchange (storage of 4)

High precision piezo stage (XYZR)

- > speed: 10 mm/s
- > encoder resolution: 10 nm
- > positioning accuracy: < 1 μm</p>

PMMA / PS Polymer Blend

Surface Imaging: 60 keV, Bi_3^{++} , FoV: 30 μ m²

PMMA / PS Polymer Blend

SPM: before TOF analysis

0.00 nm

205.16 nm

SPM: after TOF analysis

0.00 nm

Combined TOF-SIMS / SFM 2D analysis: Topography and chemical information

3D Overlay - Volume Plot

29

3D Volume Plot vs. 3D Image

Combination-61NIOE284M3n4ySPM data

Cross Section through 3D Image

Combination of TOF-SIMS + SPM data

Topography: Data Evaluation

Cross section:

Combination of TOF-SIMS + SPM data

Height profile:

Depth Scale Calibration in SIMS

SPM Profiler Mode

- > Depth profiles and 3D data sets need depth calibration $(t \rightarrow z)$
- > Crater depth needs to be measured relative to the initial surface
- > Typical SIMS crater dimensions: 200 500 µm
- > Limited SPM scan range: 80 µm

Curved Glass Surface with Polymer Coating

Crater on Glossy Photopaper

MOORE'S and EROOM'S LAW

MOORE'S LAW and EROOM'S LAW

Average Number of Molecules in PubChem DB

Ian S. Gilmore: "SIMS of organics—Advances in 2D and 3D imaging and future outlook", Journal of Vacuum Science & Technology A **31**, 050819 (2013);

IONTOF

INNOVATIVE SURFACE ANALYSIS

Average Number of Molecules in PubChem DB

Ian S. Gilmore: "SIMS of organics—Advances in 2D and 3D imaging and future outlook", Journal of Vacuum Science & Technology A **31**, 050819 (2013);

IONTOF

INNOVATIVE SURFACE ANALYSIS

Combined TOF.SIMS 5 / Q Exactive TM Instrument

Hybrid SIMS Instrument

- Dual analyser configuration with ToF and Orbitrap [™]
- > Pulsed and DC mode operation
- > Single and dual beam analysis modes

Thermo Scientific [™] Q Exactive [™] HF

- > Mass resolution 240,000 @ m/z 200
- > Scan rate up to 18 Hz
- > Mass accuracy < 1 ppm</p>
- MS/MS with precise precursor selection, full mass resolution and mass accuracy

Combined TOF.SIMS 5 / Q Exactive TM Instrument

Ultra High Mass Resolution Lipidomics

INNOVATIVE SURFACE ANALYSIS

Detection of Neurotransmitter Dopamine

NATIONAL Physical Laboratory

High Resolution Gas Cluster Source

Total ion image

> lon source:

- Ar Gas cluster ion source 20 keV
- > Beam energy:
- > Pulsed target current: 6 pA
- > Lateral resolution: < 1 µm</p>

44

Submicron Argon Gas Cluster SIMS Imaging

Submicron Ar Cluster SIMS Imaging

FOV: 250 µm Raster size: 250x250 PI current: 3.67 pA Dose density: 1.94E15 PI/cm²

Thank you for your attention!

